Respuesta :

Answer:

1. [tex]\sqrt{218}[/tex]

2. [tex]\sqrt{89}[/tex]

3. [tex]2\sqrt{17}[/tex]

Step-by-step explanation:

The formula to find the distance between any two points on a coordinate plane is as follows:

[tex]D=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}[/tex]

Where ([tex](x_1,y_1)[/tex]) and ([tex](x_2,y_2)[/tex]) are the two points one is trying to find the distance between. Substitute the points in and solve for the distance between them for each respective problem.

1.

Points: [tex](-4, 6),\ \ (3, -7)[/tex]

Substitute into the formula,

[tex]D=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}[/tex]

[tex]D=\sqrt{((-4)-(3))^2+((6)-(-7))^2}[/tex]

Simplify,

[tex]D=\sqrt{((-4)-(3))^2+((6)-(-7))^2}[/tex]

[tex]D=\sqrt{(-4-3)^2+(6+7)^2}[/tex]

[tex]D=\sqrt{(-7)^2+(13)^2}[/tex]

[tex]D=\sqrt{49+169}[/tex]

[tex]D=\sqrt{218}[/tex]

2.

Points: [tex](-6, -5)\ \ (2,0)[/tex]

Substitute into the formula,

[tex]D=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}[/tex]

[tex]D=\sqrt{((-6)-(2))^2+((-5)-(0))^2}[/tex]

Simplify,

[tex]D=\sqrt{((-6)-(2))^2+((-5)-(0))^2}[/tex]

[tex]D=\sqrt{(-6-2)^2+(-5-0)^2}[/tex]

[tex]D=\sqrt{(-8)^2+(-5)^2}[/tex]

[tex]D=\sqrt{64+25}[/tex]

[tex]D=\sqrt{89}[/tex]

3.

Points: [tex](-1, 4)\ \ (1,-4)[/tex]

Substitute into the formula,

[tex]D=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}[/tex]

[tex]D=\sqrt{((-1)-(1))^2+((4)-(-4))^2}[/tex]

Simplify,

[tex]D=\sqrt{((-1)-(1))^2+((4)-(-4))^2}[/tex]

[tex]D=\sqrt{(-1-1)^2+(4+4)^2}[/tex]

[tex]D=\sqrt{(-2)^2+(8)^2}[/tex]

[tex]D=\sqrt{4+64}[/tex]

[tex]D=\sqrt{68}[/tex]

[tex]D=2\sqrt{17}[/tex]

ACCESS MORE