FURTHER MATHEMATICS Use determinants to solve the systems of equation:
2x + y + 2z = 13
X + y - 2z = 8
X + 2y + z = 11​

Respuesta :

caylus

Answer:

Step-by-step explanation:

[tex]\left\{\begin{array}{ccc}2x+1y+2z&=&13\\1x+1y-2z&=&8\\1x+2y+1z&=&11\\\end{array}\right.\\\\\\\Delta=\left| \begin{array}{ccc}2&1&2\\1&1&-2\\1&2&1\end{array}\right| =2*\left| \begin{array}{ccc}1&\frac{1}{2}&1\\1&1&-2\\1&2&1\end{array}\right| =2*\left| \begin{array}{ccc}1&\frac{1}{2}&1\\0&\frac{1}{2}&-3\\0&1&3\end{array}\right| =2*(\frac{3}{2}+3)=9\\\\[/tex]

[tex]\Delta_1=\left| \begin{array}{ccc}13&1&2\\8&1&-2\\11&2&1\end{array}\right| =2*\left| \begin{array}{ccc}13&1&2\\8&1&-2\\\frac{11}{2}& 1&\frac{1}{2}\end{array}\right| =2*\left| \begin{array}{ccc}13&1&2\\-5&0&-4\\\frac{-5}{2}& 0&\frac{5}{2}\end{array}\right| \\\\=2*(-1)*(\frac{-25}{2}-\frac{20}{2}) =45\\[/tex]

[tex]\Delta_2=\left| \begin{array}{ccc}2&13&2\\1&8&-2\\1&11&1\end{array}\right| \\\\\\=\left| \begin{array}{ccc}3&21&0\\3&30&0\\1&11&1\end{array}\right| \\\\\\=1*(90-63) =27\\[/tex]

[tex]\Delta_3=\left| \begin{array}{ccc}2&1&13\\1&1&8\\1&2&11\end{array}\right| \\\\\\=\left| \begin{array}{ccc}0&-1&-3\\0&-1&-3\\1&2&11\end{array}\right| \\\\\\=0\\[/tex]

[tex]\left\{\begin{array}{ccc}x=\dfrac{\Delta_1}{\Delta}=\dfrac{45}{9}=5\\\\y=\dfrac{\Delta_2}{\Delta}=\dfrac{27}{9}=3\\\\z=\dfrac{\Delta_3}{\Delta}=\dfrac{0}{9}=0\\\end{array}\right.[/tex]

ACCESS MORE