Answer:
[tex]\displaystyle A = 15x^2 + 11x + 2\text{ cm}^2[/tex]
Step-by-step explanation:
We are given that the length and width of a rectangle is given by:
[tex]\ell = (5x + 2)\text{ cm} \text{ and } w = (3x+1)\text{ cm}[/tex]
And we want to find the area of the rectangle.
Recall that the area of a rectangle is given by:
[tex]\displaystyle A = w\ell[/tex]
Substitute:
[tex]A = (3x+1)(5x+2)[/tex]
Expand and simplify:
[tex]\displaystyle \begin{aligned}A &= 5x(3x+1) + 2(3x+1) \\ &= (15x^2+5x)+(6x+2) \\ &= (15x^2)+(5x+6x)+(2) \\ &= 15x^2 + 11x +2 \end{aligned}[/tex]
Hence, the area of the rectangle is:
[tex]\displaystyle A = 15x^2 + 11x + 2\text{ cm}^2[/tex]