Answer:
Equation of the line is 3y = -5x + 8
Step-by-step explanation:
Slope:
[tex]{ \bf{m = \frac{y _{2} - y _{1} }{x _{2} - x _{1} } }}[/tex]
substitute:
[tex]{ \sf{m = \frac{1 - 6}{1 - ( - 2)} }} \\ { \sf{m = - \frac{5}{3} }}[/tex]
General equation of a line:
[tex]{ \boxed{ \pmb{y = mx + b}}}[/tex]
b is the y-intercept.
Consinder point (1, 1):
[tex]{ \sf{1 = ( - \frac{5}{3} \times 1) + b}} \\ { \sf{b = \frac{8}{3} }}[/tex]
Substitute:
[tex]{ \sf{y = - \frac{5}{3} x + \frac{8}{3} }} \\ \\ { \sf{3y = - 5x + 8}}[/tex]