Respuesta :
Step-by-step explanation:
[tex]a {}^{3} + b {}^{3} [/tex]
Notice how that for both a and b are raised to an odd power. This means we can factor this by a binomial raised to an odd power.
Let divide this by
[tex]a + b[/tex]
Since that is also a odd power.
[tex]( {a}^{3} + {b}^{3} ) \div (a + b)[/tex]
We get
a quotient of
[tex]( {a}^{2} - ab + {b}^{2} )[/tex]
So our factors are
[tex](a + b)( {a}^{2} - ab + {b}^{2} )[/tex]
Answer:
[tex](a+b)(a^{2} -ab+b^{2} )[/tex]
Step-by-step explanation:
[tex]\textbf{We need to factor this expression}[/tex] [tex]\textbf{by applying the sum of two cubes rule:}[/tex]
[tex]\Longrightarrow[/tex] [tex]A^{3} +B^{3} =(A+B)(A^{2} -AB+B^{2} )[/tex]
Here,
A= a
B= b
So, [tex](a+b)(a^{2} -ab+b^{2} )[/tex]
[tex]\leadsto\leadsto\leadsto\leadsto\leadsto\leadsto\leadsto\leadsto\leadsto\leadsto[/tex]
[tex]\textsl{OAmalOHopeO}[/tex]