Respuesta :

caylus

Answer:

Hello,

Step-by-step explanation:

Q1:

[tex]\left\{\begin{array}{ccc}x&=&t+\dfrac{1}{t} \\\\y&=&t-\dfrac{1}{t} \\\end{array}\right.\\\\\left\{\begin{array}{ccc}x^2&=&t^2+\dfrac{1}{t^2} +2\\\\y^2&=&t^2+\dfrac{1}{t^2} -2\\\end{array}\right.\\\\\\x^2-y^2=4: \ equilater\ hyperbola.\\[/tex]

Q2:

1)

[tex]\left\{\begin{array}{ccc}x&=&2t^2} \\\\y&=&4t \\\end{array}\right.\\\\\\\left\{\begin{array}{ccc}t&=&\dfrac{y}{4} \\\\x&=&2*(\dfrac{y}{4})^2 \\\end{array}\right.\\\\\\\boxed{x=\dfrac{y^2}{8}} :\ parabola\ with\ x-axis\ as\ axis\ of\ symmetry[/tex]

2)

[tex]y=\dfrac{25}{x} \\[/tex]

equilater hyperbola (centre (0,0))