Respuesta :

Answer:

e = 44/5 = 8.800

Step-by-step explanation:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :

                    e/22-(6/15)=0

Step by step solution :

STEP

1

:

           2

Simplify   —

           5

Equation at the end of step

1

:

  e    2

 —— -  —  = 0

 22    5

STEP

2

:

            e

Simplify   ——

           22

Equation at the end of step

2

:

  e    2

 —— -  —  = 0

 22    5

STEP

3

:

Calculating the Least Common Multiple :

3.1    Find the Least Common Multiple

     The left denominator is :       22

     The right denominator is :       5

       Number of times each prime factor

       appears in the factorization of:

Prime

Factor   Left

Denominator   Right

Denominator   L.C.M = Max

{Left,Right}

2 1 0 1

11 1 0 1

5 0 1 1

Product of all

Prime Factors  22 5 110

     Least Common Multiple:

    ��110

Calculating Multipliers :

3.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M

   Denote the Left Multiplier by  Left_M

   Denote the Right Multiplier by  Right_M

   Denote the Left Deniminator by  L_Deno

   Denote the Right Multiplier by  R_Deno

  Left_M = L.C.M / L_Deno = 5

  Right_M = L.C.M / R_Deno = 22

Making Equivalent Fractions :

3.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.      e • 5

  ——————————————————  =   —————

        L.C.M              110

  R. Mult. • R. Num.      2 • 22

  ——————————————————  =   ——————

        L.C.M              110  

Adding fractions that have a common denominator :

3.4       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

e • 5 - (2 • 22)     5e - 44

————————————————  =  ———————

      110              110  

Equation at the end of step

3

:

 5e - 44

 ———————  = 0

   110  

STEP

4

:

When a fraction equals zero :

4.1    When a fraction equals zero ...

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the denominator, Tiger multiplys both sides of the equation by the denominator.

Here's how:

 5e-44

 ————— • 110 = 0 • 110

  110

Now, on the left hand side, the  110  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :

  5e-44  = 0

Solving a Single Variable Equation:

4.2      Solve  :    5e-44 = 0

Add  44  to both sides of the equation :

                     5e = 44

Divide both sides of the equation by 5:

                    e = 44/5 = 8.800

One solution was found :

e = 44/5 = 8.800

Answer:

e =44/5

Step-by-step explanation:

e          6

----- = --------

22         15

Using cross products

e * 15 = 6 *22

15e = 132

Divide by 15

15e/15 = 132/15

e =44/5