Respuesta :

leena

Hi there!

2|x - 1| + 5 < 13

Begin by subtracting 5 from both sides:

2|x - 1| < 8

Divide both sides by 2:

|x - 1| < 4

Find both the positive and negative solutions:

x - 1 < 4

x < 5

-(x - 1) < 4

-x + 1 < 4

-x < 3

x > -3

[tex]Hello[/tex] [tex]There![/tex]

Let's solve your inequality step-by-step.

[tex]2(|x-1|)+5<13[/tex]

Step 1:

You must add -5 both sides.

[tex]2(|x-1|)+5+-5<13+-5[/tex]

[tex]2(|x-1|)<8[/tex]

Step 2:

You must divide both sides by 2.

[tex]\frac{2(|x-1|)}{2}[/tex] [tex] \leq \frac{8}{2}[/tex]

[tex]|x-1|<4[/tex]

Step 3:

Solve the Absolute Value.

[tex]|x-1|<4[/tex]

We know that x−1<4 and x−1>−4.

[tex]x-1<4[/tex] Condition 1.

[tex]x-1+1<4+1[/tex] (Add 1 to both sides)

[tex]x<5[/tex]

[tex]x-1>-4[/tex] (Condition 2)

[tex]x-1+1>-4+1[/tex] (Add 1 to both sides)

[tex]x>-3[/tex]

[tex]ANSWER![/tex]

[tex]x<5[/tex] [tex]and[/tex] [tex]x>-3[/tex]

Hopefully, this helps you!!

[tex]AnimeVines[/tex]