Respuesta :

Answer:

F(8,6)

Step-by-step explanation:

(x₁,x₂)  --> E (-7, 2)

F(x₂,y₂)

Midpoint M(0.5 , 4)

Midpoint = [tex](\frac{x_{1}+x_{2}}{2},\frac{+y_{1}+y_{2}}{2})[/tex]

[tex](\frac{-7+x_{2}}{2},\frac{2+y_{2}}{2}) = (0.5, 4)\\\\[/tex]

Compare x,coordinates and y-coordinates,

[tex]\frac{-7+x_{2}}{2}= 0.5 \ ; \ \frac{2+y_{2}}{2}=4\\\\[/tex]

-7 + x₂ = 0.5*2    ; 2+y₂ = 4*2

-7+ x₂ = 1             ; 2 +y₂ = 8

     x₂ = 1+ 7        ;      y₂ = 8 - 2

     x₂ = 8            ;     y₂ = 6

F(8,6)

Answer:

F(8,6)

Step-by-step explanation:

(x₁,x₂)  --> E (-7, 2)

F(x₂,y₂)

Midpoint M(0.5 , 4)

Midpoint =

Compare x,coordinates and y-coordinates,

-7 + x₂ = 0.5*2    ; 2+y₂ = 4*2

-7+ x₂ = 1             ; 2 +y₂ = 8

    x₂ = 1+ 7        ;      y₂ = 8 - 2

    x₂ = 8            ;     y₂ = 6

F(8,6)