Respuesta :
Answer:
F(8,6)
Step-by-step explanation:
(x₁,x₂) --> E (-7, 2)
F(x₂,y₂)
Midpoint M(0.5 , 4)
Midpoint = [tex](\frac{x_{1}+x_{2}}{2},\frac{+y_{1}+y_{2}}{2})[/tex]
[tex](\frac{-7+x_{2}}{2},\frac{2+y_{2}}{2}) = (0.5, 4)\\\\[/tex]
Compare x,coordinates and y-coordinates,
[tex]\frac{-7+x_{2}}{2}= 0.5 \ ; \ \frac{2+y_{2}}{2}=4\\\\[/tex]
-7 + x₂ = 0.5*2 ; 2+y₂ = 4*2
-7+ x₂ = 1 ; 2 +y₂ = 8
x₂ = 1+ 7 ; y₂ = 8 - 2
x₂ = 8 ; y₂ = 6
F(8,6)
Answer:
F(8,6)
Step-by-step explanation:
(x₁,x₂) --> E (-7, 2)
F(x₂,y₂)
Midpoint M(0.5 , 4)
Midpoint =
Compare x,coordinates and y-coordinates,
-7 + x₂ = 0.5*2 ; 2+y₂ = 4*2
-7+ x₂ = 1 ; 2 +y₂ = 8
x₂ = 1+ 7 ; y₂ = 8 - 2
x₂ = 8 ; y₂ = 6
F(8,6)