Respuesta :

Answer:

y = 54/25 when x = 4.

Step-by-step explanation:

y is given by the equation:

[tex]\displaystyle y = p\times q^{x-1}[/tex]

Where p and q are numbers.

We are also given that when x = 1, y = 10 and when x = 6, y = 0.7776.

And we want to determine the value of y when x = 4.

Since y = 10 when x = 1:

[tex]\displaystyle (10) = p\times q^{(1)-1}[/tex]

Simplify:

[tex]10 = p \times q^0[/tex]

Any number (except for zero) to the zeroth power is one. Hence:

[tex]p=10[/tex]

Thus, our equation is now:

[tex]y = 10\times q^{x-1}[/tex]

When x = 6, y = 0.7776. Thus:

[tex](0.7776) = 10\times q^{(6)-1}[/tex]

Simplify and divide both sides by ten:

[tex]\displaystyle 0.07776 = q^5[/tex]

Take the fifth root of both sides:

[tex]\displaystyle q = \sqrt[5]{0.07776}[/tex]

Use a calculator. Hence:

[tex]\displaystyle q = \frac{3}{5} = 0.6[/tex]

Our completed equation is:

[tex]\displaystyle y = 10\times \left(\frac{3}{5}\right)^{x-1}[/tex]

Then when x = 4, y equals:

[tex]\displaystyle \begin{aligned} y &= 10\times \left(\frac{3}{5}\right)^{(4)-1} \\ \\ &= 10\times \left(\frac{3}{5}\right)^3 \\ \\ &= 10\times \left(\frac{27}{125}\right) \\ \\ &= \frac{54}{25}\end{aligned}[/tex]