contestada

If K = (AB)/(A+B) , then B = ?

(a) (A)/(1−A)
(b) (AK)/(A−K)
(c) (AK)/(K−A)
(d) (A+K)/(A)
(e) (A−K)/(AK)

Respuesta :

Lets do

[tex]\\ \sf\longmapsto K=\dfrac{AB}{A+B}[/tex]

[tex]\\ \sf\longmapsto \dfrac{1}{K}=\dfrac{A+B}{AB}[/tex]

[tex]\\ \sf\longmapsto \dfrac{1}{K}=\dfrac{1}{A}+\dfrac{1}{B}[/tex]

[tex]\\ \sf\longmapsto \dfrac{1}{B}=\dfrac{1}{K}-\dfrac{1}{A}[/tex]

[tex]\\ \sf\longmapsto \dfrac{1}{B}=\dfrac{K-A}{AK}[/tex]

[tex]\\ \sf\longmapsto B=\dfrac{AK}{K-A}[/tex]