Simplify the following expression:

Answer:
[tex]{ \bf{a.}} \\ { \sf{( - 3y) {}^{ - 2} }} \\ = { \sf{ - \frac{1}{9 {y}^{2} } }} \\ \\ { \bf{b.}} \\ = { \sf{ \frac{ {x}^{ - (3a + 7b) - 8( - a - b)} }{ {x}^{a - 5b} } }} \\ \\ = { \sf{ \frac{ {x}^{5a - b} }{x {}^{a - 5b} } }} \\ \\ { \sf{ = {x}^{5a - b - a + 5b} }} \\ { \sf{ = {x}^{4(a + b)} }} \\ \\ { \bf{c.}} \\ { \sf{ \frac{ {3}^{5} }{( {3}^{ - 7} \div {3}^{9}) {}^{2} } }} \\ { \sf{ = \frac{ {3}^{5} }{ { {3}^{( - 7 - 9)} }^{2} } }} \\ \\ = { \sf{ \frac{ {3}^{5} }{ {3}^{ - 32} } }} \\ = { \sf{ {3}^{5 - ( - 32)} }} \\ = { \sf{ {3}^{37} }}[/tex]