Respuesta :
Answer:
Centre is,
((5+7)/2,(8+6)/2)
or, (12/2,14/2)
or, (6,7)
radius is,
[√{(5-7)²+(8-6)²}]/2
= [√(2²+2²)]/2
= [√(4+4)]/2
= [√8 ]= [2√2]/2 = √2
The center of a circle = (6, 7)
the radius of a circle = [tex]\sqrt{2}[/tex] units
What is the distance formula?
"The distance between two points [tex](x_1,y_1),(x_2,y_2)[/tex] is given by [tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_2)^2}[/tex]"
What is midpoint formula?
"The coordinates of the midpoint of the line segment having endpoints [tex](x_1,y_1),(x_2,y_2)[/tex] is given by [tex]m=(\frac{x_1+x_2}{2} ,\frac{y_1+y_2}{2} )[/tex] "
What is diameter of circle?
"It is the line segment through the center and touching two points on its edge. "
For given question,
The diameter of circle has endpoints at (5, 8) and (7,6).
Let [tex](x_1,y_1)=(5,8),(x_2,y_2)=(7,6)[/tex]
First we find the length of the diameter of the circle.
Using the distance formula,
[tex]\Rightarrow d=\sqrt{(x_2-x_1)^2+(y_2-y_2)^2} \\\\\Rightarrow d=\sqrt{(7-5)^2+(6-8)^2} \\\\\Rightarrow d=\sqrt{2^2+(-2)^2}\\\\\Rightarrow d=\sqrt{4+4}\\\\\Rightarrow d=2\sqrt{2}~units[/tex]
We know that the diameter = 2 × radius
⇒ radius (r) = [tex]\frac{2\sqrt{2} }{2}[/tex]
⇒ r = [tex]\sqrt{2}[/tex] units
We know that the midpoint of the diameter is the center of the circle.
Using midpoint formula the center of the circle would be,
[tex]\Rightarrow O=(\frac{x_1+x_2}{2} ,\frac{y_1+y_2}{2} )\\\\\Rightarrow O=(\frac{5+7}{2} ,\frac{8+6}{2} )\\\\\Rightarrow O=(\frac{12}{2} ,\frac{14}{2} )\\\\\Rightarrow O=(6,7)[/tex]
Therefore, the center of the circle is (6,7)
Hence, the center of a circle = (6, 7)
the radius of a circle = [tex]\sqrt{2}[/tex]
Learn more about the distance formula and mid-point formula here:
https://brainly.com/question/11231122
#SPJ3
