Respuesta :
Answer:
Slope-intercept form: [tex]y=-\frac{7}{4}x-\frac{19}{2}[/tex]
Point-slope-form: [tex]y-1=-\frac{7}{4}(x+6)[/tex]
Step-by-step explanation:
Hi there!
We want to find the equation of the line perpendicular to the line 4x-7y=2 that goes through (-6, 1) in slope-intercept form, as well as the point-slope form
Slope-intercept form is defined as y=mx+b, where m is the slope and b is the y intercept
Point-slope form is defined as [tex]y-y_1=m(x-x_1)[/tex], where m is the slope and [tex](x_1, y_1)[/tex] is a point
Meanwhile, perpendicular lines have slopes that are negative and reciprocal. When they are multiplied together, the result is -1
So let's find the slope of the line 4x-7y=2
The equation of the line is in standard form, which is ax+by=c, where a, b, and c are integer coefficients a is non-negative, and a and b aren't 0
So let's find the slope of the line 4x-7y=2
One way to do that is to convert the equation of the line from standard form to slope-intercept form
Our goal is to isolate y onto one side
Subtract 4x from both sides
-7y=-4x+2
Divide both sides by -7
y=[tex]\frac{4}{7}x-\frac{2}{7}[/tex]
So the slope of the line 4x-7y=2 is [tex]\frac{4}{7}[/tex]
Now, we need to find the slope of the line perpendicular to it
Use this formula: [tex]m_1*m_2=-1[/tex]
[tex]m_1[/tex] in this case is [tex]\frac{4}{7}[/tex]
[tex]\frac{4}{7}m_2=-1[/tex]
Multiply both sides by [tex]\frac{7}{4}[/tex]
m=[tex]-\frac{7}{4}[/tex]
Let's see the equation of the perpendicular line so far in slope-intercept form:
y=[tex]\frac{-7}{4}x[/tex]+b
We need to find b now
The equation of the line passes through (-6,1), so we can use it to solve for b.
Substitute -6 as x and 1 as y
[tex]1=-\frac{7}{4}*-6+b[/tex]
Now multiply
1=[tex]\frac{42}{4}+b[/tex]
Subtract 42/4 from both sides to isolate b
-19/2=b
Substitute -19/2 as b into the equation
The equation in slope-intercept form y=[tex]\frac{-7}{4}x-\frac{19}{2}[/tex]
Now, here's the equation in point-slope form
Recall that the slope is [tex]\frac{-7}{4}[/tex] , our point is (-6, 1), and point-slope form is [tex]y-y_1=m(x-x_1)[/tex]
Let's label the value of everything to avoid any confusion
[tex]m=-\frac{7}{4} \\x_1=-6\\y_1=1[/tex]
Now substitute those values into the equation
[tex]y-1=-\frac{7}{4}(x--6)[/tex]
We can simplify the x--6 to x+6
[tex]y-1=-\frac{7}{4}(x+6)[/tex]
Hope this helps!
