Respuesta :
Answer:
(a)
[tex]\begin{array}{cccccc}x & {1} & {3} & {4} & {6} & {12} \ \\ P(x) & {0.30} & {0.10} & {0.05} & {0.15} & {0.40} \ \end{array}[/tex]
(b)
[tex]P(3 \le x \le 6) = 0.30[/tex]
[tex]P(4 \le x)=0.60[/tex]
Step-by-step explanation:
Given
[tex]F(x) = \left[\begin{array}{ccc}0& x<1 &\\0.30&1 \le x<3 &\\0.40&3 \le x < 4& &0.45 &4 \le x<6 &\\0.60 & 6 \le x < 12 & & 1 & 12 \le x\end{array}\right[/tex]
Solving (a): The pmf
This means that we list out the probability of each value of x.
To do this, we simply subtract the current probability value from the next.
So, we have:
[tex]\begin{array}{cccccc}x & {1} & {3} & {4} & {6} & {12} \ \\ P(x) & {0.30} & {0.10} & {0.05} & {0.15} & {0.40} \ \end{array}[/tex]
The calculation is as follows:
[tex]0.30 - 0 = 0.30[/tex]
[tex]0.40 - 0.30 = 0.10[/tex]
[tex]0.45 - 0.40 = 0.05[/tex]
[tex]0.60 - 0.45 = 0.15[/tex]
[tex]1 - 0.60 = 0.40[/tex]
The x values are gotten by considering where the equality sign is in each range.
[tex]1 \le x < 3[/tex] means [tex]x = 1[/tex]
[tex]3 \le x < 4[/tex] means [tex]x = 3[/tex]
[tex]4 \le x < 6[/tex] means [tex]x=4[/tex]
[tex]6 \le x < 12[/tex] means [tex]x = 6[/tex]
[tex]12 \le x[/tex] means [tex]x = 12[/tex]
Solving (b):
[tex](i)\ P(3 \le x \le 6)[/tex]
This is calculated as:
[tex]P(3 \le x \le 6) = F(6) - F(3-)[/tex]
From the given function
[tex]F(6)= 0.60[/tex]
[tex]F(3-) = F(1) = 0.30[/tex]
So:
[tex]P(3 \le x \le 6) = 0.60 - 0.30[/tex]
[tex]P(3 \le x \le 6) = 0.30[/tex]
[tex](ii)\ P(4 \le x)[/tex]
This is calculated as:
[tex]P(4 \le x)=1 - F(4-)[/tex]
[tex]P(4 \le x)=1 - F(3)[/tex]
[tex]P(4 \le x)=1 - 0.40[/tex]
[tex]P(4 \le x)=0.60[/tex]