100 POINTS AND BRAINLIEST FOR THIS WHOLE SEGMENT

a) Find zw, Write your answer in both polar form with ∈ [0, 2pi] and in complex form.

b) Find z^10. Write your answer in both polar form with ∈ [0, 2pi] and in complex form.

c) Find z/w. Write your answer in both polar form with ∈ [0, 2pi] and in complex form.

d) Find the three cube roots of z in complex form. Give answers correct to 4 decimal

places.

100 POINTS AND BRAINLIEST FOR THIS WHOLE SEGMENTa Find zw Write your answer in both polar form with 0 2pi and in complex formb Find z10 Write your answer in bot class=

Respuesta :

Answer:

See Below (Boxed Solutions).

Step-by-step explanation:

We are given the two complex numbers:

[tex]\displaystyle z = \sqrt{3} - i\text{ and } w = 6\left(\cos \frac{5\pi}{12} + i\sin \frac{5\pi}{12}\right)[/tex]

First, convert z to polar form. Recall that polar form of a complex number is:

[tex]z=r\left(\cos \theta + i\sin\theta\right)[/tex]

We will first find its modulus r, which is given by:

[tex]\displaystyle r = |z| = \sqrt{a^2+b^2}[/tex]

In this case, a = √3 and b = -1. Thus, the modulus is:

[tex]r = \sqrt{(\sqrt{3})^2 + (-1)^2} = 2[/tex]

Next, find the argument θ in [0, 2π). Recall that:

[tex]\displaystyle \tan \theta = \frac{b}{a}[/tex]

Therefore:

[tex]\displaystyle \theta = \arctan\frac{(-1)}{\sqrt{3}}[/tex]

Evaluate:

[tex]\displaystyle \theta = -\frac{\pi}{6}[/tex]

Since z must be in QIV, using reference angles, the argument will be:

[tex]\displaystyle \theta = \frac{11\pi}{6}[/tex]

Therefore, z in polar form is:

[tex]\displaystyle z=2\left(\cos \frac{11\pi}{6} + i \sin \frac{11\pi}{6}\right)[/tex]

Part A)

Recall that when multiplying two complex numbers z and w:

[tex]zw=r_1\cdot r_2 \left(\cos (\theta _1 + \theta _2) + i\sin(\theta_1 + \theta_2)\right)[/tex]

Therefore:

[tex]\displaystyle zw = (2)(6)\left(\cos\left(\frac{11\pi}{6} + \frac{5\pi}{12}\right) + i\sin\left(\frac{11\pi}{6} + \frac{5\pi}{12}\right)\right)[/tex]

Simplify. Hence, our polar form is:

[tex]\displaystyle\boxed{zw = 12\left(\cos\frac{9\pi}{4} + i\sin \frac{9\pi}{4}\right)}[/tex]

To find the complex form, evaluate:

[tex]\displaystyle zw = 12\cos \frac{9\pi}{4} + i\left(12\sin \frac{9\pi}{4}\right) =\boxed{ 6\sqrt{2} + 6i\sqrt{2}}[/tex]

Part B)

Recall that when raising a complex number to an exponent n:

[tex]\displaystyle z^n = r^n\left(\cos (n\cdot \theta) + i\sin (n\cdot \theta)\right)[/tex]

Therefore:

[tex]\displaystyle z^{10} = r^{10} \left(\cos (10\theta) + i\sin (10\theta)\right)[/tex]

Substitute:

[tex]\displaystyle z^{10} = (2)^{10} \left(\cos \left(10\left(\frac{11\pi}{6}\right)\right) + i\sin \left(10\left(\frac{11\pi}{6}\right)\right)\right)[/tex]

Simplify:

[tex]\displaystyle z^{10} = 1024\left(\cos\frac{55\pi}{3}+i\sin \frac{55\pi}{3}\right)[/tex]

Simplify using coterminal angles. Thus, the polar form is:

[tex]\displaystyle \boxed{z^{10} = 1024\left(\cos \frac{\pi}{3} + i\sin \frac{\pi}{3}\right)}[/tex]

And the complex form is:

[tex]\displaystyle z^{10} = 1024\cos \frac{\pi}{3} + i\left(1024\sin \frac{\pi}{3}\right) = \boxed{512+512i\sqrt{3}}[/tex]

Part C)

Recall that:

[tex]\displaystyle \frac{z}{w} = \frac{r_1}{r_2} \left(\cos (\theta_1-\theta_2)+i\sin(\theta_1-\theta_2)\right)[/tex]

Therefore:

[tex]\displaystyle \frac{z}{w} = \frac{(2)}{(6)}\left(\cos \left(\frac{11\pi}{6} - \frac{5\pi}{12}\right) + i \sin \left(\frac{11\pi}{6} - \frac{5\pi}{12}\right)\right)[/tex]

Simplify. Hence, our polar form is:

[tex]\displaystyle\boxed{ \frac{z}{w} = \frac{1}{3} \left(\cos \frac{17\pi}{12} + i \sin \frac{17\pi}{12}\right)}[/tex]

And the complex form is:

[tex]\displaystyle \begin{aligned} \frac{z}{w} &= \frac{1}{3} \cos\frac{5\pi}{12} + i \left(\frac{1}{3} \sin \frac{5\pi}{12}\right)\right)\\ \\ &=\frac{1}{3}\left(\frac{\sqrt{2}-\sqrt{6}}{4}\right) + i\left(\frac{1}{3}\left(- \frac{\sqrt{6} + \sqrt{2}}{4}\right)\right) \\ \\ &= \boxed{\frac{\sqrt{2} - \sqrt{6}}{12} -\frac{\sqrt{6}+\sqrt{2}}{12}i}\end{aligned}[/tex]

Part D)

Let a be a cube root of z. Then by definition:

[tex]\displaystyle a^3 = z = 2\left(\cos \frac{11\pi}{6} + i\sin \frac{11\pi}{6}\right)[/tex]

From the property in Part B, we know that:

[tex]\displaystyle a^3 = r^3\left(\cos (3\theta) + i\sin(3\theta)\right)[/tex]

Therefore:

[tex]\displaystyle r^3\left(\cos (3\theta) + i\sin (3\theta)\right) = 2\left(\cos \frac{11\pi}{6} + i\sin \frac{11\pi}{6}\right)[/tex]

If two complex numbers are equal, their modulus and arguments must be equivalent. Thus:

[tex]\displaystyle r^3 = 2\text{ and } 3\theta = \frac{11\pi}{6}[/tex]

The first equation can be easily solved:

[tex]r=\sqrt[3]{2}[/tex]

For the second equation, 3θ must equal 11π/6 and any other rotation. In other words:

[tex]\displaystyle 3\theta = \frac{11\pi}{6} + 2\pi n\text{ where } n\in \mathbb{Z}[/tex]

Solve for the argument:

[tex]\displaystyle \theta = \frac{11\pi}{18} + \frac{2n\pi}{3} \text{ where } n \in \mathbb{Z}[/tex]

There are three distinct solutions within [0, 2π):

[tex]\displaystyle \theta = \frac{11\pi}{18} , \frac{23\pi}{18}\text{ and } \frac{35\pi}{18}[/tex]

Hence, the three roots are:

[tex]\displaystyle a_1 = \sqrt[3]{2} \left(\cos\frac{11\pi}{18}+ \sin \frac{11\pi}{18}\right) \\ \\ \\ a_2 = \sqrt[3]{2} \left(\cos \frac{23\pi}{18} + i\sin\frac{23\pi}{18}\right) \\ \\ \\ a_3 = \sqrt[3]{2} \left(\cos \frac{35\pi}{18} + i\sin \frac{35\pi}{18}\right)[/tex]

Or, approximately:

[tex]\displaystyle\boxed{ a _ 1\approx -0.4309 + 1.1839i,} \\ \\ \boxed{a_2 \approx -0.8099-0.9652i,} \\ \\ \boxed{a_3\approx 1.2408-0.2188i}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico