Respuesta :

The identity as been verified/proved as:

[tex]1 - \tan\ a\ tan\ b = 1 - \tan\ a\ tan\ b[/tex]

Given that:

[tex]\frac{\cos(a + b)}{\cos\ a\cos b} = 1 - \tan\ a\ tan\ b[/tex]

Apply cosine identity to the numerator

[tex]\frac{\cos\ a\ cos\ b - \sin a\ sin\ b}{\cos\ a\cos b} = 1 - \tan\ a\ tan\ b[/tex]

Split the fraction:

[tex]\frac{\cos\ a\ cos\ b}{\cos\ a\cos b} - \frac{\sin a\ sin\ b}{\cos\ a\cos b} = 1 - \tan\ a\ tan\ b[/tex]

Cancel out common terms

[tex]1 - \frac{\sin a\ sin\ b}{\cos\ a\cos b} = 1 - \tan\ a\ tan\ b[/tex]

In trigonometry, we have:

[tex]\frac{\sin \theta}{\cos \theta} = \tan \theta[/tex]

So, the equation becomes:

[tex]1 - \tan\ a\ tan\ b = 1 - \tan\ a\ tan\ b[/tex]

Hence, the identity has been verified

Read more about trigonometry identities at:

https://brainly.com/question/21055284

RELAXING NOICE
Relax