Respuesta :

Solution :

Given :

2y''' + 15y'' + 24y' + 11y= 0

Let x = independent variable

[tex](a_0D^n + a_1D^{n-1}+a_2D^{n-2} + ....+ a_n) y) = Q(x)[/tex]  is a differential equation.

If [tex]Q(x) \neq 0[/tex]

It is non homogeneous then,

The general solution  = complementary solution + particular integral

If Q(x) = 0

It is called the homogeneous then the general solution =  complementary solution.

2y''' + 15y'' + 24y' + 11y= 0

[tex]$(2D^3+15D^2+24D+11)y=0$[/tex]

Auxiliary equation,

[tex]$2m^3+15m^2+24m +11 = 0$[/tex]

-1  | 2    15    24     11

    | 0   -2    - 13    -11  

      2    13    11       0

∴ [tex]2m^2+13m+11=0[/tex]

The roots are

[tex]$=\frac{-b\pm \sqrt{b^2-4ac}}{2a}$[/tex]

[tex]$=\frac{-13\pm \sqrt{13^2-4(11)(2)}}{2(2)}$[/tex]

[tex]$=\frac{-13\pm9}{4}$[/tex]

[tex]$=-5.5, -1$[/tex]

So, [tex]m_1, m_2, m_3 = -1, -1, -5.5[/tex]

Then the general solution is :

[tex]$= (c_1+c_2 x)e^{-x} + c_3 \ e^{-5.5x}$[/tex]

 

RELAXING NOICE
Relax