Two manned satellites approach one another at a relative velocity of v=0.190 m/s, intending to dock. The first has a mass of m1=4.00×103 kg and the second a mass of m2=7.50×103 kg. If the two satellites collide elastically rather than dock, what is their final relative velocity?

Respuesta :

Answer:

Their final relative velocity is 0.190 m/s

Explanation:

The relative velocity of the satellites, v = 0.190 m/s

The mass of the first satellite, m₁ = 4.00 × 10³ kg

The mass of the second satellite, m₂ = 7.50 × 10³ kg

Given that the satellites have elastic collision, we have;

[tex]v_2 = \dfrac{2 \cdot m_1}{m_1 + m_2} \cdot u_1 - \dfrac{m_1 - m_2}{m_1 + m_2} \cdot u_2[/tex]

[tex]v_2 = \dfrac{ m_1 - m_2}{m_1 + m_2} \cdot u_1 + \dfrac{2 \cdot m_2}{m_1 + m_2} \cdot u_2[/tex]

Given that the initial velocities are equal in magnitude, we have;

u₁ = u₂ = v/2

u₁ = u₂ = 0.190 m/s/2 = 0.095 m/s

v₁ and v₂ = The final velocities of the satellites

We get;

[tex]v_1 = \dfrac{2 \times 4.0 \times 10^3}{4.0 \times 10^3 + 7.50 \times 10^3} \times 0.095 - \dfrac{4.0 \times 10^3- 7.50\times 10^3}{4.0 \times 10^3+ 7.50\times 10^3} \times 0.095 = 0.095[/tex]

[tex]v_2 = \dfrac{ 4.0 \times 10^3 - 7.50\times 10^3}{4.0 \times 10^3 + 7.50 \times 10^3} \times 0.095 + \dfrac{2 \times 7.50\times 10^3}{4.0 \times 10^3+ 7.50\times 10^3} \times 0.095 = 0.095[/tex]

The final relative velocity of the satellite, [tex]v_f[/tex] = v₁ + v₂

∴ [tex]v_f[/tex] = 0.095 + 0.095 = 0.190

The final relative velocity of the satellite, [tex]v_f[/tex] = 0.190 m/s

ACCESS MORE