26. A square loop whose sides are 6.0-cm long is made with copper wire of radius 1.0 mm. If a magnetic field perpendicular to the loop is changing at a rate of 5.0 mT/s, what is the current in the loop?

Respuesta :

Answer:

Explanation:

The formula for determining the Emf induced in a loop is:

[tex]\varepsilon = \dfrac{d \phi}{dt}[/tex]

[tex]\varepsilon = \dfrac{d (B*A)}{dt}[/tex]

[tex]\varepsilon = A \times \dfrac{dB}{dt}[/tex]

[tex]\varepsilon = (side (l))^2 \times \dfrac{dB}{dt}[/tex]

where;

square area A = ( l²)

l² = 6.0 cm = 6.0 × 10⁻²

[tex]\varepsilon = ( 6.0 \times 10^{-2})^2 \times 5.0 \times 10^{-3} \ T/S[/tex]

[tex]\varepsilon =18 \times 10^{6} \ V[/tex]

Recall that:

The resistivity of copper = [tex]1.68 \times 10^{-8}[/tex] ohm m

We can as well say that the length of the copper wire = perimeter of the square loop;

The perimeter of the square loop = 4L

Thus, the length of the copper wire  = 4 (6.0 × 10⁻² )m

= 24× 10⁻² m

Finally, the current in the loop is determined from the formula:

V = IR

where,

V = voltage

I = current and R = resistance of the wire

Making "I" the subject:

I = V/R

where;

[tex]R = \dfrac{\rho \times l}{A}[/tex]

[tex]R = \dfrac{\rho \times l}{\pi * r^2}[/tex]

[tex]R = \dfrac{1.68 *10^{-8} \times 24*10^{-2}}{\pi * (1*10^{-3})^2}[/tex]

[tex]R = 0.001283 \ ohms[/tex]

[tex]I = \dfrac{18*10^{-6}}{0.001283}[/tex]

I = 14.029 mA

ACCESS MORE
EDU ACCESS