Respuesta :

It looks like the equation is

[tex]2\ln\left(e^{\ln(2x)}\right)-\ln\left(e^{\ln(10x)}\right) = \ln(30)[/tex]

Right away, we notice that any solution to this equation must be positive, so x > 0.

For any base b, we have [tex]b^{\log_b(a)}=a[/tex], so we can simplify this to

[tex]2\ln(2x)-\ln\left(10x\right) = \ln(30)[/tex]

Next, [tex]\ln(a^b)=b\ln(a)[/tex], so that

[tex]\ln(2x)^2-\ln\left(10x\right) = \ln(30)[/tex]

[tex]\ln\left(4x^2\right)-\ln\left(10x\right) = \ln(30)[/tex]

Next, [tex]\ln\left(\frac ab\right)=\ln(a)-\ln(b)[/tex], so that

[tex]\ln\left(\dfrac{4x^2}{10x}\right) = \ln(30)[/tex]

For x ≠ 0, we have [tex]\frac xx=1[/tex], so that

[tex]\ln\left(\dfrac{2x}5\right) = \ln(30)[/tex]

Take the antilogarithm of both sides:

[tex]e^{\ln\left((2x)/5\right)} = e^{\ln(30)}[/tex]

[tex]\dfrac{2x}5 = 30[/tex]

Solve for x :

[tex]2x = 150[/tex]

[tex]\boxed{x=75}[/tex]

RELAXING NOICE
Relax