Respuesta :

Answer:

See explanation

Step-by-step explanation:

The coordinate of ABCD is not given; So, I will solve using general coordinates (x,y).

First, ABCD is dilated by 1/3.

The rule is:

[tex](x,y) \to \frac{1}{3}(x,y)[/tex]

This gives

[tex](x,y) \to (\frac{x}{3},\frac{y}{3})[/tex]

Next, it is reflected across y-axis.

The rule is:

[tex](x,y) \to (-x,y)[/tex]

So, we have:

[tex](\frac{x}{3},\frac{y}{3}) \to (-\frac{x}{3},\frac{y}{3})[/tex]

So, the complete transformation is:

[tex](x,y) \to (\frac{x}{3},\frac{y}{3}) \to (-\frac{x}{3},\frac{y}{3})[/tex]

Assume that:

[tex]A = (1,3)[/tex]

The transformation will be:

[tex]A' = (-\frac{1}{3},\frac{3}{3})[/tex]

[tex]A' = (-\frac{1}{3},1)[/tex]

ACCESS MORE