Respuesta :

Given:

The table of values is:

x :     -7          -5         -3           -1

y :      5           9         13          17

To find:

Whether the given data is linear and then find the equation.

Solution:

The given data is linear if the slope and rate of change is constant.

Slope formula:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

Using the slope formula. we get

[tex]\dfrac{9-5}{-5-(-7)}=2[/tex]

[tex]\dfrac{13-9}{-3-(-5)}=2[/tex]

[tex]\dfrac{17-13}{-1-(-3)}=2[/tex]

Since the rate of change is constant, i.e., 2, therefore the given data is linear.

The slope of a linear equation is 2 and it passes through the point (-7,5). So, the equation of the line is:

[tex]y-y_1=m(x-x_1)[/tex]

[tex]y-5=2(x-(-7))[/tex]

[tex]y-5=2(x+7)[/tex]

[tex]y-5=2x+14[/tex]

Adding 5 on both sides, we get

[tex]y-5+5=2x+14+5[/tex]

[tex]y=2x+19[/tex]

Therefore, the equation for the given data is [tex]y=2x+19[/tex].

ACCESS MORE