Given:
The table of values is:
x : -7 -5 -3 -1
y : 5 9 13 17
To find:
Whether the given data is linear and then find the equation.
Solution:
The given data is linear if the slope and rate of change is constant.
Slope formula:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
Using the slope formula. we get
[tex]\dfrac{9-5}{-5-(-7)}=2[/tex]
[tex]\dfrac{13-9}{-3-(-5)}=2[/tex]
[tex]\dfrac{17-13}{-1-(-3)}=2[/tex]
Since the rate of change is constant, i.e., 2, therefore the given data is linear.
The slope of a linear equation is 2 and it passes through the point (-7,5). So, the equation of the line is:
[tex]y-y_1=m(x-x_1)[/tex]
[tex]y-5=2(x-(-7))[/tex]
[tex]y-5=2(x+7)[/tex]
[tex]y-5=2x+14[/tex]
Adding 5 on both sides, we get
[tex]y-5+5=2x+14+5[/tex]
[tex]y=2x+19[/tex]
Therefore, the equation for the given data is [tex]y=2x+19[/tex].