The function f(x) = - (x + 5) * (x + 1) shown What is the range of the function ? 10 all real numbers loss than or equal to all roal numbers less than or equal to -3 all real numbers groater or equal to 4 numbors greater than or equal to -6

Respuesta :

Given:

The function is:

[tex]f(x)=-(x+5)(x+1)[/tex]

To find:

The range of the function.

Solution:

We have,

[tex]f(x)=-(x+5)(x+1)[/tex]

It can be written as:

[tex]f(x)=-(x^2+x+5x+5)[/tex]

[tex]f(x)=-(x^2+6x+5)[/tex]

Add and subtract square of half of coefficient of x, i.e., [tex]\left(\dfrac{6}{2}\right)^2=9[/tex].

[tex]f(x)=-(x^2+6x+9-9+5)[/tex]

[tex]f(x)=-(x^2+2(x)(3)+3^2-4)[/tex]

[tex]f(x)=-(x^2+2(x)(3)+3^2)+4[/tex]

[tex]f(x)=-(x+3)^2+4[/tex]

On comparing this equation with [tex]f(x)=a(x-h)^2+k[/tex], we get

[tex]a=-1[/tex], it means the graph of the function is a downward parabola and the vertex is the point of maxima.

[tex]h=-3[/tex]

[tex]k=4[/tex]

The vertex of the function is (-3,4). So, the value of the function cannot be greater than 4.

Therefore, the range of the function is all real numbers less than or equal to 4.

Note: All options are incorrect.

ACCESS MORE