Answer: The correct answer is in the first option.
Step-by-step explanation:
Equation of an Ellipse
[tex]\dfrac{x^{2} }{a^{2} } +\dfrac{y^{2} }{b^{2} } =1\\\\25x^{2} - 150x + 9y^{2} = 0\\\\\text {Let's \: perform \: the \: transformations:}\\\\\dfrac{25x^{2} }{25 \cdot 9} -\dfrac{150x}{25 \cdot 9} +\dfrac{9y^{2} }{25 \cdot 9} =0\\\\\dfrac{x^{2} }{3^{2} } -\dfrac{6x}{3^{2} } +\dfrac{y^{2} }{5^{2} } =0\\\\\dfrac{x^{2} -6x}{3^{2} } +\dfrac{y^{2} }{5^{2} } +\dfrac{3^{2} }{3^{2} } -\dfrac{3^{2} }{3^{2} } =0\\\\\dfrac{x^{2} -6x+3^{2} }{3^{2} } +\dfrac{y^{2} }{5^{2} } =\dfrac{3^{2} }{3^{2} }[/tex]
[tex]\dfrac{(x-3)^{2} }{3^{2} } +\dfrac{y^{2} }{5^{2} } =1[/tex]