Find x on this special right triangle

Answer:
The answer is 7
Step-by-step explanation:
We know than Tan45=1
Tanx=opp/adj
tan45=y/(7[tex]\sqrt{2}[/tex])/2
Thus y=7[tex]\sqrt{2}[/tex]/2
We know by pythagoras theorem that hyp^2=side^2+side^2
[tex]x^{2}[/tex]=([tex](7\sqrt{2} /2)^{2}[/tex]+[tex](7\sqrt{2}/2)^{2}[/tex]
[tex]x^{2}[/tex]=(49(2)/4)+(49(2)/4)
[tex]x^{2}[/tex]=(49/2)+(49/2)
[tex]x^{2}[/tex]=(98/2)
[tex]x^{2}[/tex]=49
x=7