Find all real and non-real roots of the function ƒ(x) = x2 + 49. Question 1 options: A) x = –7, 7 B) x = –7i, 7i C) x = –49i, 49i D) x = i + 7, i – 7

Respuesta :

Given:

The function is:

[tex]f(x)=x^2+49[/tex]

To find:

The all the real and non-real roots of the given function.

Solution:

We have,

[tex]f(x)=x^2+49[/tex]

For roots, [tex]f(x)=0[/tex],

[tex]x^2+49=0[/tex]

[tex]x^2=-49[/tex]

Taking square root on both sides, we get

[tex]x=\pm \sqrt{-49}[/tex]

[tex]x=\pm \sqrt{-1}\sqrt{49}[/tex]

[tex]x=\pm 7i[/tex]                [tex][\because \sqrt{-1}=i][/tex]

The roots of the given function are -7i and 7i.

Therefore, the correct option is B.

Answer:

x = –7i, 7i

Step-by-step explanation:

ACCESS MORE