contestada

Given the equation y=14x2−5, the minimum is ___ and the range is ___
and when x=-14, then f(x)= ____

Respuesta :

Answer:

The minimum is -5

The range is [tex]y \ge -5[/tex]

f(14) = 2739

Step-by-step explanation:

Given

[tex]y = 14x^2 - 5[/tex]

Solving (a): The minimum

A quadratic function is represented as:

[tex]y = ax^2 + bx + c[/tex]

If a > 0, then the function has a minimum

By comparison

[tex]a = 14[/tex] --- the function has a minimum

[tex]b = 0[/tex]

[tex]c = -5[/tex]

To calculate the minimum, we first calculate the following is calculated as:

[tex]m = -\frac{b}{2a}[/tex]

So, we have:

[tex]m = -\frac{0}{2*14}[/tex]

[tex]m = 0[/tex]

So, the minimum is at f(m)

We have: [tex]y = 14x^2 - 5[/tex]

[tex]f(0) = 14 *0^2 - 5[/tex]

[tex]f(0) = - 5[/tex]

Solving (b): The range

In (a), we have:

[tex]f(0) = - 5[/tex] --- the minimum

This implies that the smallest value of y on the graph is -5.

So, the range is:

[tex]r = \{y|y\ge -5\}[/tex]

Solving (c): f(14)

We have:

[tex]y = 14x^2 - 5[/tex]

So:

[tex]f(14) = 14 * 14^2 - 5[/tex]

[tex]f(14) = 2739[/tex]

ACCESS MORE