Answer:
The minimum is -5
The range is [tex]y \ge -5[/tex]
f(14) = 2739
Step-by-step explanation:
Given
[tex]y = 14x^2 - 5[/tex]
Solving (a): The minimum
A quadratic function is represented as:
[tex]y = ax^2 + bx + c[/tex]
If a > 0, then the function has a minimum
By comparison
[tex]a = 14[/tex] --- the function has a minimum
[tex]b = 0[/tex]
[tex]c = -5[/tex]
To calculate the minimum, we first calculate the following is calculated as:
[tex]m = -\frac{b}{2a}[/tex]
So, we have:
[tex]m = -\frac{0}{2*14}[/tex]
[tex]m = 0[/tex]
So, the minimum is at f(m)
We have: [tex]y = 14x^2 - 5[/tex]
[tex]f(0) = 14 *0^2 - 5[/tex]
[tex]f(0) = - 5[/tex]
Solving (b): The range
In (a), we have:
[tex]f(0) = - 5[/tex] --- the minimum
This implies that the smallest value of y on the graph is -5.
So, the range is:
[tex]r = \{y|y\ge -5\}[/tex]
Solving (c): f(14)
We have:
[tex]y = 14x^2 - 5[/tex]
So:
[tex]f(14) = 14 * 14^2 - 5[/tex]
[tex]f(14) = 2739[/tex]