Pls solve this for me ryt now wai abeg
...The first three terms of an arithmetic progression (A.P) are (x+1),(4x-2) and(6x-3) respectively .If the last term is 18,find the
a.Value of x b.Sum of the terms of the progression

Respuesta :

Answer:

[tex]x = 2[/tex]

[tex]S_n = 63[/tex]

Step-by-step explanation:

Given

[tex]a_1 = x + 1[/tex]

[tex]a_2 = 4x -2[/tex]

[tex]a_3 = 6x -3[/tex]

[tex]a_n = 18[/tex]

Solving (a): x

To do this, we make use of common difference (d)

[tex]d = a_2 - a_1[/tex]

[tex]d = a_3 - a_2[/tex]

So, we have:

[tex]a_3 - a_2 = a_2 - a_1[/tex]

Substitute known values

[tex](6x - 3) - (4x - 2) = (4x - 2) - (x + 1)[/tex]

Remove brackets

[tex]6x - 3 - 4x + 2 = 4x - 2 - x - 1[/tex]

Collect like terms

[tex]6x - 4x- 3 + 2 = 4x - x- 2 - 1[/tex]

[tex]2x- 1 = 3x- 3[/tex]

Collect like terms

[tex]2x - 3x = 1 - 3[/tex]

[tex]-x = -2[/tex]

[tex]x = 2[/tex]

Solving (b): Sum of progression

First, we calculate the first term

[tex]a_1 = x + 1[/tex]

[tex]a_1 = 2 + 1 = 3[/tex]

Next, calculate d

[tex]d = a_2 - a_1[/tex]

[tex]d = (4x - 2) - (x +1)[/tex]

[tex]d = (4*2 - 2) - (2 +1)[/tex]

[tex]d = 6 - 3 = 3[/tex]

Next, we calculate n using:

[tex]a_n = a + (n - 1)d[/tex]

Where:

[tex]a_n = 18[/tex]

[tex]d = 3; a = 3[/tex]

So:

[tex]18 = 3 +(n - 1) * 3[/tex]

Subtract 3 from both sides

[tex]15 = (n - 1) * 3[/tex]

Divide both sides by 3

[tex]5 = n - 1[/tex]

Add 1 to both sides

[tex]6 = n[/tex]

[tex]n = 6[/tex]

The sum of the progression is:

[tex]S_n = \frac{n}{2} * [a + a_n][/tex]

So,, we have:

[tex]S_n = \frac{6}{2} * [3 + 18][/tex]

[tex]S_n = 3 * 21[/tex]

[tex]S_n = 63[/tex]

ACCESS MORE
EDU ACCESS