Answer:
the change in the kinetic energy of the system is -42.47 J
Explanation:
Given;
mass A, Ma = 2 kg
initial velocity of mass A, Ua = 15 m/s
Mass M, Mm = 4 kg
initial velocity of mass M, Um = 7 m/s
Let the common velocity of the two masses after collision = V
Apply the principle of conservation of linear momentum, to determine the final velocity of the two masses;
[tex]M_aU_a + M_mU_m = V(M_a + M_m)\\\\(2\times 15 )+ (4\times 7) = V(2+4)\\\\58 = 6V\\\\V = \frac{58}{6} = 9.67 \ m/s[/tex]
The initial kinetic of the two masses;
[tex]K.E_i = \frac{1}{2} M_aU_a^2 \ + \ \frac{1}{2} M_mU_m^2\\\\K.E_i = (0.5 \times 2\times 15^2) \ + \ (0.5 \times 4\times 7^2)\\\\K.E_i = 323 \ J[/tex]
The final kinetic energy of the two masses;
[tex]K.E_f = \frac{1}{2} M_aV^2 \ + \ \frac{1}{2} M_mV^2\\\\K.E_f = \frac{1}{2} V^2(M_a + M_m)\\\\K.E_f = \frac{1}{2} \times 9.67^2(2+ 4)\\\\K.E_f = 280.53 \ J[/tex]
The change in kinetic energy is calculated as;
[tex]\Delta K.E = K.E_f \ - \ K.E_i\\\\\Delta K.E = 280.53 \ J \ - \ 323 \ J\\\\\Delta K.E = -42.47 \ J[/tex]
Therefore, the change in the kinetic energy of the system is -42.47 J