Given that QR¯∥ST¯, identify the length of PT¯.

Answer:
PT = 16.3 units
Step-by-step explanation:
From the picture attached,
From ΔPQR and ΔPST,
QR ║ST [Given]
PQ is a transversal line.
Therefore, ∠PST ≅ ∠PQR [Corresponding angles]
∠P ≅ ∠P [Common angle]
ΔPQR ~ ΔPST [By AA property of similarity of two triangles]
Therefore, by the property of similarity, corresponding sides of the similar triangles will be proportional.
[tex]\frac{PQ}{PS}=\frac{PR}{PT}[/tex]
[tex]\frac{12+28}{28}= \frac{PT+7}{PT}[/tex]
[tex]\frac{40}{28}=1+\frac{7}{PT}[/tex]
[tex]\frac{10}{7}-1=\frac{7}{PT}[/tex]
[tex]\frac{10-7}{7}=\frac{7}{PT}[/tex]
PT = [tex]\frac{49}{3}[/tex]
PT = 16.3 units