Answer:
a. 1 x 10^-35
Explanation:
The correct compound given is: [tex]\mathsf{Cu_3(AsO_4)}_2[/tex]
To predict the approximate Ksp value of the given compound, we will need to express the oxidation-reduction half-reaction of the compound and its dissociation, then, we will use the Nernst equation to determine the approximate Ksp value.
To start with the reduction half-reaction:
[tex]\mathsf{Cu_3(AsO_4)_{2}(s) + 6e^- \to 2As O_{4}^{3-}_{(aq)}+3Cu(s) }[/tex]
The oxidation half-reaction is:
[tex]\mathsf{3Cu(s) \to 3CU^{2+}_{(aq)} + 6e^-}[/tex]
The overall cell reaction now is:
[tex]\mathsf{Cu_3(AsO_4)_{2}(s) \to 3Cu^+ (aq) + 2As O_{4}^{3-}_{(aq)} }[/tex]
From the reduction half-reduction, the number of moles of electrons (n) transferred is 6 moles.
By applying the Nernst equation:
[tex]\mathsf{E_{cell} = E^0_{cell} -\dfrac{0.0591V}{n}log [Cu^{2+}]^3[AsO_4^{3-}]^2 }[/tex]
At standard conditions;
The standard cell potential [tex]\mathsf{E^0_{cell} = -0.342 \ V}[/tex]
and [tex]\mathsf{E_{cell} = 0 \ V}[/tex] since it is at equilibrium.
∴
[tex]\mathsf{0 = -0.342 -\dfrac{0.0591V}{6}log [Cu^{2+}]^3[AsO_4^{3-}]^2 } \\ \\ \\ \mathsf{0.342 = -\dfrac{0.0591V}{6}log [Cu^{2+}]^3[AsO_4^{3-}]^2 }[/tex]
[tex]\mathsf{log [Cu^{2+}]^3[AsO_4^{3-}]^2 = \dfrac{-(0.342)*6}{0.0591 }}[/tex]
[tex]\mathsf{log [Cu^{2+}]^3[AsO_4^{3-}]^2 = -34.7}[/tex]
[tex]\mathsf{log [Cu^{2+}]^3[AsO_4^{3-}]^2 \simeq -35}[/tex]
[tex]\mathsf{[Cu^{2+}]^3[AsO_4^{3-}]^2 = 10^{-35}}[/tex]
[tex]\mathbf{K_{sp} = [Cu^{2+}]^3[AsO_4^{3-}]^2 = 1\times 10^{-35}}[/tex]