Answer:
Switch x and y, and solve for y
[tex]f^{-1}(x) =\frac{(x -4)^3}{8}[/tex]
Step-by-step explanation:
Given
[tex]f(x) = 3\sqrt{8x} + 4[/tex]
Required
Complete the steps to determine the inverse function
Solving (a): Complete the blanks
Switch x and y, and solve for y
Solving (b): Determine the inverse function
[tex]f(x) = \sqrt[3]{8x} + 4[/tex]
Replace f(x) with y
[tex]y = \sqrt[3]{8x} + 4[/tex]
Switch x and y
[tex]x = \sqrt[3]{8y} + 4[/tex]
Now, we solve for y
Subtract 4 from both sides
[tex]x -4= \sqrt[3]{8y} + 4-4[/tex]
[tex]x -4= \sqrt[3]{8y}[/tex]
Take cube roots of both sides
[tex](x -4)^3= 8y[/tex]
Divide both sides by 8
[tex]\frac{(x -4)^3}{8} = y[/tex]
So, we have:
[tex]y =\frac{(x -4)^3}{8}[/tex]
Hence, the inverse function is:
[tex]f^{-1}(x) =\frac{(x -4)^3}{8}[/tex]