Two coins are tossed. Assume that each event is equally likely to occur. ​a) Use the counting principle to determine the number of sample points in the sample space. ​b) Construct a tree diagram and list the sample space. ​c) Determine the probability that no tails are tossed. ​d) Determine the probability that exactly one tail is tossed. ​e) Determine the probability that two tails are tossed. ​f) Determine the probability that at least one tail is tossed.

Respuesta :

Answer:

(a) 4 sample points

(b) See attachment for tree diagram

(c) The probability that no tail is appeared is 1/4

(d) The probability that exactly 1 tail is appeared is 1/2

(e) The probability that 2 tails are appeared is 1/4

(f) The probability that at least 1 tail appeared is 3/4

Step-by-step explanation:

Given

[tex]Coins = 2[/tex]

Solving (a): Counting principle to determine the number of sample points

We have:

[tex]Coin\ 1 = \{H,T\}[/tex]

[tex]Coin\ 2 = \{H,T\}[/tex]

To determine the sample space using counting principle, we simply pick one outcome in each coin. So, the sample space (S) is:

[tex]S = \{HH,HT,TH,TT\}[/tex]

The number of sample points is:

[tex]n(S) = 4[/tex]

Solving (b): The tree diagram

See attachment for tree diagram

From the tree diagram, the sample space is:

[tex]S = \{HH,HT,TH,TT\}[/tex]

Solving (c): Probability that no tail is appeared

This implies that:

[tex]P(T = 0)[/tex]

From the sample points, we have:

[tex]n(T = 0) = 1[/tex] --- i.e. 1 occurrence where no tail is appeared

So, the probability is:

[tex]P(T = 0) = \frac{n(T = 0)}{n(S)}[/tex]

This gives:

[tex]P(T = 0) = \frac{1}{4}[/tex]

Solving (d): Probability that exactly 1 tail is appeared

This implies that:

[tex]P(T = 1)[/tex]

From the sample points, we have:

[tex]n(T = 1) = 2[/tex] --- i.e. 2 occurrences where exactly 1 tail appeared

So, the probability is:

[tex]P(T = 1) = \frac{n(T = 1)}{n(S)}[/tex]

This gives:

[tex]P(T = 1) = \frac{2}{4}[/tex]

[tex]P(T = 1) = \frac{1}{2}[/tex]

Solving (e): Probability that 2 tails appeared

This implies that:

[tex]P(T = 2)[/tex]

From the sample points, we have:

[tex]n(T = 2) = 1[/tex] --- i.e. 1 occurrences where 2 tails appeared

So, the probability is:

[tex]P(T = 2) = \frac{n(T = 2)}{n(S)}[/tex]

This gives:

[tex]P(T = 2) = \frac{1}{4}[/tex]

Solving (f): Probability that at least 1 tail appeared

This implies that:

[tex]P(T \ge 1)[/tex]

In (c), we have:

[tex]P(T = 0) = \frac{1}{4}[/tex]

Using the complement rule, we have:

[tex]P(T \ge 1) + P(T = 0) = 1[/tex]

Rewrite as:

[tex]P(T \ge 1) = 1-P(T = 0)[/tex]

Substitute known value

[tex]P(T \ge 1) = 1-\frac{1}{4}[/tex]

Take LCM

[tex]P(T \ge 1) = \frac{4-1}{4}[/tex]

[tex]P(T \ge 1) = \frac{3}{4}[/tex]

Ver imagen MrRoyal
ACCESS MORE
EDU ACCESS