We want to factor the following expression: (x 3)^2 14(x 3) 49(x 3) 2 14(x 3) 49(, x, plus, 3, ), squared, plus, 14, (, x, plus, 3, ), plus, 49 We can factor the expression as (U V)^2(U V) 2 (, U, plus, V, ), squared where UUU and VVV are either constant integers or single-variable expressions. 1) What are UUU and VVV

Respuesta :

Answer:

[tex]U = x[/tex]

[tex]V=10[/tex]

Step-by-step explanation:

Given

[tex](x +3)^2 + 14(x + 3) + 49 = (U + V)^2[/tex]

Required

Find U and V

We have:

[tex](x +3)^2 + 14(x + 3) + 49 = (U + V)^2[/tex]

Expand

[tex]x^2 + 6x + 9 + 14x + 42 + 49 = (U + V)^2[/tex]

Collect like terms

[tex]x^2 + 6x + 14x + 9 + 42 + 49 = (U + V)^2[/tex]

[tex]x^2 + 20x + 100 = (U + V)^2[/tex]

Expand

[tex]x^2 + 10x + 10x + 100 = (U + V)^2[/tex]

Group

[tex][x^2 + 10x] + [10x + 100] = (U + V)^2[/tex]

Factorize each group

[tex]x[x + 10] + 10[x + 10] = (U + V)^2[/tex]

Factor out x + 10

[tex][x + 10][x + 10] = (U + V)^2[/tex]

So, we have:

[tex][x + 10]^2 = (U + V)^2[/tex]

By comparison

[tex]U = x[/tex]

[tex]V=10[/tex]

ACCESS MORE