Respuesta :

Given:

The inequality is:

[tex]|2x-1|>3[/tex]

To find:

The solution set for the given inequality.

Solution:

We know that, if [tex]|x|>a[/tex], then [tex]x<-a[/tex] and [tex]x>a[/tex].

We have,

[tex]|2x-1|>3[/tex]

It can be written as:

[tex]2x-1<-3[/tex] or [tex]2x-1>3[/tex]

Case I:

[tex]2x-1<-3[/tex]

[tex]2x<-3+1[/tex]

[tex]2x<-2[/tex]

[tex]x<\dfrac{-2}{2}[/tex]

[tex]x<-1[/tex]

Case II:

[tex]2x-1>3[/tex]

[tex]2x>3+1[/tex]

[tex]2x>4[/tex]

[tex]x>\dfrac{4}{2}[/tex]

[tex]x>2[/tex]

The required solution for the given inequality is [tex]x<-1[/tex] or [tex]x>2[/tex]. The solution set in the interval notation is [tex](-\infty,-1)\cup (2,\infty)[/tex].

Therefore, the required solution set is [tex](-\infty,-1)\cup (2,\infty)[/tex].

ACCESS MORE
EDU ACCESS