Triangle MNP is dilated according to the rule DO,1.5 (x,y)Right arrow(1.5x, 1.5y) to create the image triangle M'N'P, which is not shown.

On a coordinate plane, triangle M N P has points (negative 4, 6), (2, 6), and (negative 1, 1).

What are the coordinates of the endpoints of segment M'N'?

M'(-6, 9) and N'(4, 9)
M'(-6, 9) and N'(3, 9)
M'(-2, 3) and N'(7, 9)
M'(-2, 3) and N'(1, 3)

Respuesta :

Given:

The vertex of a triangle MNP are M(-4, 6), N(2, 6), and P(-1, 1).

The rule of dilation is:

[tex](x,y)\to (1.5x,1.5y)[/tex]

The image of triangle MNP after dilation is M'N'P'.

To find:

The coordinates of the endpoints of segment M'N'.

Solution:

The end points of MN are M(-4, 6) and N(2, 6).

The rule of dilation is:

[tex](x,y)\to (1.5x,1.5y)[/tex]

Using this rule, we get

[tex]M(-4,6)\to M'(1.5(-4),1.5(6))[/tex]

[tex]M(-4,6)\to M'(-6,9)[/tex]

And,

[tex]N(2,6)\to N'(1.5(2),1.5(6))[/tex]

[tex]N(2,6)\to N'(3,9)[/tex]

The endpoints of M'N' are M'(-6, 9) and N'(3, 9).

Therefore, the correct option is B.

Answer:

B on edge

Step-by-step explanation:

ACCESS MORE