Respuesta :

Answer:

See Explanations

Explanation:

pH =-log[H₃O⁺] = -log[H⁺]

pOH = -log[OH⁻]

For weak acids [H⁺] = SqrRt(Ka·[Acid])

For weak bases [OH⁻] = SqrRt(Kb·[Base])

pH + pOH = 14

__________________________________________

A. Given 0.18M CH₃NH₂; Kb = (4.4 x 10⁻⁴)* => pH = 11.95

CH₃NH₂ + H₂O => CH₃NH₃OH ⇄ CH₃NH₃⁺ + OH⁻;

[OH⁻]  = SqrRt(Kb·[weak base]) = SqrRt(4.4 x 10⁻⁴ x 0.18)M = 8.97 x 10⁻³M

=> pOH = -log[OH⁻] = -log(8.93x10⁻³) = -(-2.05) = 2.05

=> pH = 14 - pOH = 14 - 2.05 = 11.95.

*Kb values for most ammonia derivatives in water can be found online by searching 'Kb-values for weak bases'. Kb-values for methyl amine and methylammonium chloride are both 4.4x10⁻⁴.

___________________________________________________

B. Given 0.18M CH₃NH₃Cl

In water ... CH₃NH₃Cl => CH₃NH₃⁺ + Cl⁻; Kb(CH₃NH₃Cl) = 4.4 x 10⁻⁴

Cl⁻ + H₂O => No Rxn (i.e.; no hydrolysis occurs) ... Cl⁻ does not react with H₂O.

Hydrolysis Reaction of Methylammonium Ion:

CH₃NH₃⁺ + H₂O => CH₃NH₄OH ⇄ CH₃NH₄⁺ + OH⁻

Ka' x Kb = Kw => Ka' = Kw/Kb = 10⁻¹⁴/4.4 x 10⁻⁴ = 2.27 x 10⁻¹¹                                   Ka' = [CH₃NH₄⁺][OH⁻]/[CH₃NH₄OH] = (x)(x)/(0.18M) = (x²/0.18M) = 2.27 x 10⁻¹¹ => x = [OH⁻] = SqrRt(2.27x10⁻¹¹ x 0.18)M = 2.02 x 10⁻⁶M => pOH = -log(2.02 x 10⁻⁶) = -(-5.69) = 5.69 => pH = 14 - pOH = 14 - 5.69 = 8.31.

*note => the general nature of halide interactions would increase acidity (lower pH) of the halogenated compound.

C. A mixture of 0.18M CH₃NH₂ and 0.18M CH₃NH₃Cl          

Mixture of 0.18M CH₃NH₂ + 0.18M CH₃NH₃Cl

In Water ...

=> 0.18M CH₃NH₃OH + 0.18M CH₃NH₃Cl

=> 0.18M CH₃NH₃⁺ + 0.1M OH⁻ + 0.18M CH₃NH₃⁺ + 0.18M Cl⁻

=> 0.36M CH₃NH₃⁺ + 0.18M OH⁻ + 0.18M Cl⁻

-----------------------------------------------------------

Ka'(CH₃NH₃⁺) x Kb(CH₃NH₂) = Kw => Ka'(CH₃NH₃⁺) = Kw/Kb(CH₃NH₂)

=> Ka'(CH₃NH₃⁺) = (10⁻¹⁴/4.4x10⁻⁴) = 2.27x10⁻¹¹

----------------------------------------------------------

From the 0.36M CH₃NH₃⁺

=>       CH₃NH₃⁺ + H₂O  ⇄ CH₃NH₄⁺ + OH⁻

C(eq)   0.36M        ----              x             x     (<= at equilibrium after mixing)

Ka'(CH₃NH₃⁺) = [CH₃NH₄⁺][OH⁻]/[CH₃NH₃⁺] = x²/(0.36M)

=> x = [OH⁻] = SqrRt(Ka'(CH₃NH₃⁺)·0.36M) = SqrRt(2.27x10⁻¹¹/0.36) = 0.0126M

=> Total [OH⁻] = 0.0126M + 0.18M = 0.1926M from hydrolysis process

=> final solution mix is therefore, 0.1926M in OH⁻ + 0.18M in Cl⁻

--------------------------------------------------------

  • Cl⁻ + H₂O => No Rxn (Cl⁻ does not react with H₂O)
  • The 0.1926M in OH⁻ => [H⁺] = Kw/[OH⁻] = (10⁻¹⁴/0.1926)M = 5.192 x 10⁻¹⁴M in H₃O⁺ ions (= H⁺ ions) ...

∴pH = -log[H⁺] = -log(5.192x10⁻¹⁴) = -(-13.29) = 13.29 for solution mix

The acid and base dissociation constant and the 0.18 M of CH₃NH₂ and

CH₃NH₃Cl and the mixture give the following approximate values;

A. The pH value of the 0.18 M CH₃NH₂ is 11.93

B. The pH value of the 0.18 M CH₃NH₃Cl is 5.69

C. The pH value of the mixture is 10.644

Which method can be used to calculate the pH values?

A. 0.18 M CH₃NH₂

The solution is presented as follows;

CH₃NH₂ + H₂O → CH₃NH₃⁺ + OH⁻

Let x represent the number of moles of CH₃NH₃⁺ and OH⁻ produced, we

have;

The number of moles of CH₃NH₂ remaining = 0.18 - x

Which gives;

[tex]K_b = \mathbf{\dfrac{[CH_3NH_3^+][OH^-]}{[CH_3NH_2]}}[/tex]

[tex]K_b[/tex] for CH₃NH₂ = 4.167 × 10⁻⁴

Therefore;

[tex]4.167 \times 10^{-4} = \mathbf{\dfrac{x \times x}{0.18 - x}}[/tex]

4.167 × 10⁻⁴ × (0.18 - x) = x²

4.167 × 10⁻⁴ × (0.18 - x) - x² = 0

Which gives;

x = [OH⁻] = 8.455 × 10⁻³

pH = 14 + log[OH⁻]

Which gives;

pH = 14 + log(8.455 × 10⁻³) ≈ 11.93

B.  0.18 M CH₃NH₃Cl

The solution is presented as follows;

CH₃NH₃⁺ → CH₃NH₂ + H⁺

Let x represent the number of moles of CH₃NH₂ and H⁺ produced,

respectively, we have;

The number of moles of CH₃NH₃⁺ remaining = 0.18 - x

Which gives;

[tex]K_a = \mathbf{\dfrac{[CH_3NH_2][H^+]}{[CH_3NH_3^+]}}[/tex]

Kₐ for CH₃NH₃Cl = 2.27 × 10⁻¹¹

Therefore;

[tex]2.27\times 10^{-11} = \dfrac{x \times x}{0.18 - x}[/tex]

2.27 × 10⁻¹¹ × (0.18 - x) = x²

2.27 × 10⁻¹¹ × (0.18 - x) - x² = 0

Which gives;

x = [H⁺] ≈ 2.02 × 10⁻⁶

pH = -log[H⁺]

Which gives;

pH = -log(2.02 × 10⁻⁶) ≈ 5.69

C. For the mixture of 0.18 M CH₃NH₂ and 0.18 M of CH₃NH₃Cl, we have;

Based on the Henderson-Hasselbalch equation, we have;

[tex]pH = \mathbf{ pKa + log\dfrac{[Conjugate \ base]}{[acid ]}}[/tex]

Which gives;

[tex]pH = -log\left(2.27 \times 10^{-11} \right)+ log\dfrac{0.18}{0.18} \approx \underline{10.644}[/tex]

Learn more about Henderson-Hasselbalch equation here:

https://brainly.com/question/13651361

ACCESS MORE