Respuesta :
Answer:
See Explanations
Explanation:
pH =-log[H₃O⁺] = -log[H⁺]
pOH = -log[OH⁻]
For weak acids [H⁺] = SqrRt(Ka·[Acid])
For weak bases [OH⁻] = SqrRt(Kb·[Base])
pH + pOH = 14
__________________________________________
A. Given 0.18M CH₃NH₂; Kb = (4.4 x 10⁻⁴)* => pH = 11.95
CH₃NH₂ + H₂O => CH₃NH₃OH ⇄ CH₃NH₃⁺ + OH⁻;
[OH⁻] = SqrRt(Kb·[weak base]) = SqrRt(4.4 x 10⁻⁴ x 0.18)M = 8.97 x 10⁻³M
=> pOH = -log[OH⁻] = -log(8.93x10⁻³) = -(-2.05) = 2.05
=> pH = 14 - pOH = 14 - 2.05 = 11.95.
*Kb values for most ammonia derivatives in water can be found online by searching 'Kb-values for weak bases'. Kb-values for methyl amine and methylammonium chloride are both 4.4x10⁻⁴.
___________________________________________________
B. Given 0.18M CH₃NH₃Cl
In water ... CH₃NH₃Cl => CH₃NH₃⁺ + Cl⁻; Kb(CH₃NH₃Cl) = 4.4 x 10⁻⁴
Cl⁻ + H₂O => No Rxn (i.e.; no hydrolysis occurs) ... Cl⁻ does not react with H₂O.
Hydrolysis Reaction of Methylammonium Ion:
CH₃NH₃⁺ + H₂O => CH₃NH₄OH ⇄ CH₃NH₄⁺ + OH⁻
Ka' x Kb = Kw => Ka' = Kw/Kb = 10⁻¹⁴/4.4 x 10⁻⁴ = 2.27 x 10⁻¹¹ Ka' = [CH₃NH₄⁺][OH⁻]/[CH₃NH₄OH] = (x)(x)/(0.18M) = (x²/0.18M) = 2.27 x 10⁻¹¹ => x = [OH⁻] = SqrRt(2.27x10⁻¹¹ x 0.18)M = 2.02 x 10⁻⁶M => pOH = -log(2.02 x 10⁻⁶) = -(-5.69) = 5.69 => pH = 14 - pOH = 14 - 5.69 = 8.31.
*note => the general nature of halide interactions would increase acidity (lower pH) of the halogenated compound.
C. A mixture of 0.18M CH₃NH₂ and 0.18M CH₃NH₃Cl
Mixture of 0.18M CH₃NH₂ + 0.18M CH₃NH₃Cl
In Water ...
=> 0.18M CH₃NH₃OH + 0.18M CH₃NH₃Cl
=> 0.18M CH₃NH₃⁺ + 0.1M OH⁻ + 0.18M CH₃NH₃⁺ + 0.18M Cl⁻
=> 0.36M CH₃NH₃⁺ + 0.18M OH⁻ + 0.18M Cl⁻
-----------------------------------------------------------
Ka'(CH₃NH₃⁺) x Kb(CH₃NH₂) = Kw => Ka'(CH₃NH₃⁺) = Kw/Kb(CH₃NH₂)
=> Ka'(CH₃NH₃⁺) = (10⁻¹⁴/4.4x10⁻⁴) = 2.27x10⁻¹¹
----------------------------------------------------------
From the 0.36M CH₃NH₃⁺
=> CH₃NH₃⁺ + H₂O ⇄ CH₃NH₄⁺ + OH⁻
C(eq) 0.36M ---- x x (<= at equilibrium after mixing)
Ka'(CH₃NH₃⁺) = [CH₃NH₄⁺][OH⁻]/[CH₃NH₃⁺] = x²/(0.36M)
=> x = [OH⁻] = SqrRt(Ka'(CH₃NH₃⁺)·0.36M) = SqrRt(2.27x10⁻¹¹/0.36) = 0.0126M
=> Total [OH⁻] = 0.0126M + 0.18M = 0.1926M from hydrolysis process
=> final solution mix is therefore, 0.1926M in OH⁻ + 0.18M in Cl⁻
--------------------------------------------------------
- Cl⁻ + H₂O => No Rxn (Cl⁻ does not react with H₂O)
- The 0.1926M in OH⁻ => [H⁺] = Kw/[OH⁻] = (10⁻¹⁴/0.1926)M = 5.192 x 10⁻¹⁴M in H₃O⁺ ions (= H⁺ ions) ...
∴pH = -log[H⁺] = -log(5.192x10⁻¹⁴) = -(-13.29) = 13.29 for solution mix
The acid and base dissociation constant and the 0.18 M of CH₃NH₂ and
CH₃NH₃Cl and the mixture give the following approximate values;
A. The pH value of the 0.18 M CH₃NH₂ is 11.93
B. The pH value of the 0.18 M CH₃NH₃Cl is 5.69
C. The pH value of the mixture is 10.644
Which method can be used to calculate the pH values?
A. 0.18 M CH₃NH₂
The solution is presented as follows;
CH₃NH₂ + H₂O → CH₃NH₃⁺ + OH⁻
Let x represent the number of moles of CH₃NH₃⁺ and OH⁻ produced, we
have;
The number of moles of CH₃NH₂ remaining = 0.18 - x
Which gives;
[tex]K_b = \mathbf{\dfrac{[CH_3NH_3^+][OH^-]}{[CH_3NH_2]}}[/tex]
[tex]K_b[/tex] for CH₃NH₂ = 4.167 × 10⁻⁴
Therefore;
[tex]4.167 \times 10^{-4} = \mathbf{\dfrac{x \times x}{0.18 - x}}[/tex]
4.167 × 10⁻⁴ × (0.18 - x) = x²
4.167 × 10⁻⁴ × (0.18 - x) - x² = 0
Which gives;
x = [OH⁻] = 8.455 × 10⁻³
pH = 14 + log[OH⁻]
Which gives;
pH = 14 + log(8.455 × 10⁻³) ≈ 11.93
B. 0.18 M CH₃NH₃Cl
The solution is presented as follows;
CH₃NH₃⁺ → CH₃NH₂ + H⁺
Let x represent the number of moles of CH₃NH₂ and H⁺ produced,
respectively, we have;
The number of moles of CH₃NH₃⁺ remaining = 0.18 - x
Which gives;
[tex]K_a = \mathbf{\dfrac{[CH_3NH_2][H^+]}{[CH_3NH_3^+]}}[/tex]
Kₐ for CH₃NH₃Cl = 2.27 × 10⁻¹¹
Therefore;
[tex]2.27\times 10^{-11} = \dfrac{x \times x}{0.18 - x}[/tex]
2.27 × 10⁻¹¹ × (0.18 - x) = x²
2.27 × 10⁻¹¹ × (0.18 - x) - x² = 0
Which gives;
x = [H⁺] ≈ 2.02 × 10⁻⁶
pH = -log[H⁺]
Which gives;
pH = -log(2.02 × 10⁻⁶) ≈ 5.69
C. For the mixture of 0.18 M CH₃NH₂ and 0.18 M of CH₃NH₃Cl, we have;
Based on the Henderson-Hasselbalch equation, we have;
[tex]pH = \mathbf{ pKa + log\dfrac{[Conjugate \ base]}{[acid ]}}[/tex]
Which gives;
[tex]pH = -log\left(2.27 \times 10^{-11} \right)+ log\dfrac{0.18}{0.18} \approx \underline{10.644}[/tex]
Learn more about Henderson-Hasselbalch equation here:
https://brainly.com/question/13651361