Respuesta :

Given:

Consider the given equation is:

[tex]p\div \sqrt{2}=\sqrt{\dfrac{t}{r+q}}[/tex]

To find:

The value of t in terms of p, q and r.

Solution:

We have,

[tex]p\div \sqrt{2}=\sqrt{\dfrac{t}{r+q}}[/tex]

It can be written as:

[tex]\dfrac{p}{\sqrt{2}}=\sqrt{\dfrac{t}{r+q}}[/tex]

Taking square on both sides, we get

[tex]\dfrac{p^2}{2}=\dfrac{t}{r+q}[/tex]

Multiply both sides by (r+q).

[tex]\dfrac{p^2(r+q)}{2}=t[/tex]

Therefore, the required solution is [tex]t=\dfrac{p^2(r+q)}{2}[/tex].