Given:
Consider the given equation is:
[tex]p\div \sqrt{2}=\sqrt{\dfrac{t}{r+q}}[/tex]
To find:
The value of t in terms of p, q and r.
Solution:
We have,
[tex]p\div \sqrt{2}=\sqrt{\dfrac{t}{r+q}}[/tex]
It can be written as:
[tex]\dfrac{p}{\sqrt{2}}=\sqrt{\dfrac{t}{r+q}}[/tex]
Taking square on both sides, we get
[tex]\dfrac{p^2}{2}=\dfrac{t}{r+q}[/tex]
Multiply both sides by (r+q).
[tex]\dfrac{p^2(r+q)}{2}=t[/tex]
Therefore, the required solution is [tex]t=\dfrac{p^2(r+q)}{2}[/tex].