Respuesta :
Answer:
2 ( Option A )
Step-by-step explanation:
The given integral to us is ,
[tex]\longrightarrow \displaystyle \int_0^1 5x \sqrt{x}\ dx [/tex]
Here 5 is a constant so it can come out . So that,
[tex]\longrightarrow \displaystyle I = 5 \int_0^1 x \sqrt{x}\ dx [/tex]
Now we can write √x as ,
[tex]\longrightarrow I = \displaystyle 5 \int_0^1 x . x^{\frac{1}{2}} \ dx [/tex]
Simplify ,
[tex]\longrightarrow I = 5 \displaystyle \int_0^1 x^{\frac{3}{2}}\ dx [/tex]
By Power rule , the integral of x^3/2 wrt x is , 2/5x^5/2 . Therefore ,
[tex]\longrightarrow I = 5 \bigg( \dfrac{2}{5} x^{\frac{5}{2}} \bigg] ^1_0 \bigg) [/tex]
On simplifying we will get ,
[tex]\longrightarrow \underline{\underline{ I = 2 }}[/tex]
Answer:
A)2
Step-by-step explanation:
we would like to integrate the following definite Integral:
[tex] \displaystyle \int_{0} ^{1} 5x \sqrt{x} dx[/tex]
use constant integration rule which yields:
[tex] \displaystyle 5\int_{0} ^{1} x \sqrt{x} dx[/tex]
notice that we can rewrite √x using Law of exponent therefore we obtain:
[tex] \displaystyle 5\int_{0} ^{1} x \cdot {x}^{1/2} dx[/tex]
once again use law of exponent which yields:
[tex] \displaystyle 5\int_{0} ^{1} {x}^{ \frac{3}{2} } dx[/tex]
use exponent integration rule which yields;
[tex] \displaystyle 5 \left( \frac{{x}^{ \frac{3}{2} + 1 } }{ \frac{3}{2} + 1} \right) \bigg| _{0} ^{1} [/tex]
simplify which yields:
[tex] \displaystyle 2 {x}^{2} \sqrt{x} \bigg| _{0} ^{1} [/tex]
recall fundamental theorem:
[tex] \displaystyle 2 ( {1}^{2}) (\sqrt{1} ) - 2( {0}^{2} )( \sqrt{0)} [/tex]
simplify:
[tex] \displaystyle 2 [/tex]
hence
our answer is A