Answer:
[tex]x^2 + y^2 + 2x - 2y - 7 = 0[/tex]
Step-by-step explanation:
Given
See attachment for circle
Required
The circle equation
First, we get the radius of the circle.
From the attachment, we have:
[tex]r = 3[/tex]
Next, the center of the circle
[tex](h,k) = (-1,1)[/tex]
The equation of the circle is:
[tex](x - h)^2 + (y - k)^2 = r^2[/tex]
This gives:
[tex](x - -1)^2 + (y - 1)^2 = 3^2[/tex]
[tex](x +1)^2 + (y - 1)^2 = 3^2[/tex]
Expand
[tex]x^2 + 2x + 1 + y^2 - 2y + 1 = 9[/tex]
Collect like terms
[tex]x^2 + y^2 + 2x - 2y + 1 + 1 - 9 = 0[/tex]
[tex]x^2 + y^2 + 2x - 2y - 7 = 0[/tex]
Hence, the equation in general form is:
[tex]x^2 + y^2 + 2x - 2y - 7 = 0[/tex]