Respuesta :

Answer:

The mean is 79.[tex]\overline {54}[/tex]

The median is 80 - 100

The mode is 80 - 100

Explanation:

The given table is presented as follows;

[tex]\begin{array}{lcrc}Classes&Mid \ point &Frequency &Frequency \times Mid \ point\\0 - 20&10& 2&20\\20-40&30&2&60\\40-60&50&3&150\\60-80&70&12&840\\80-100&90&18&1620\\100-120&110&5&550\\120-140&130&2&260\end{array}[/tex]

The mean of a class of values, [tex]\overline x[/tex] = ∑(Frequency × Midpoint)/∑(Frequency)

Therefore, we get;

[tex]\overline x[/tex] = (20+60+150+840+1620+550+260)/(2+2+3+12+18+5+2) = 79.[tex]\overline {54}[/tex]

The mean, [tex]\overline x[/tex] =79.[tex]\overline {54}[/tex]

The median class = The middle value lass = The class at the 22 nd value = 80 - 100

The median = 80 - 100

The modal class = The class with the highest frequency = 80 - 100

The mode = 80 - 100