Respuesta :

Answer:

See Explanation

Step-by-step explanation:

Required

Proportion problems

An example is:

y is directly proportional to x such that: y=4 when x = 2;

Derive the equation

For direct proportions, we have:

[tex]y\ \alpha\ x[/tex]

This gives:

[tex]y = kx[/tex]

Make k the subject

[tex]k = y/x[/tex]

So:

[tex]k = 4/2 =2[/tex]

So, the equation is:

[tex]y = kx[/tex]

[tex]y = 2x[/tex]

Assume the above question is for inverse proportion

The variation will be:

[tex]y\ \alpha\ \frac{1}{x}[/tex]

This gives:

[tex]y\ = \frac{k}{x}[/tex]

Make k the subject

[tex]k =x*y[/tex]

[tex]k =2* 4 = 8[/tex]

So, the equation is:

[tex]y\ = \frac{k}{x}[/tex]

[tex]y = \frac{8}{x}[/tex]