Given:
The limit problem is:
[tex]\lim_{x\to -\infty}(-2x^5-3x+1)[/tex]
To find:
The value of the given limit problem.
Solution:
We have,
[tex]\lim_{x\to -\infty}(-2x^5-3x+1)[/tex]
In the function [tex]-2x^5-3x+1[/tex], the degree of the polynomial is 5, which is an odd number and the leading coefficient is -2, which is a negative number.
So, the function approaches to positive infinity as x approaches to negative infinity.
[tex]\lim_{x\to -\infty}(-2x^5-3x+1)=\infty[/tex]
Therefore, [tex]\lim_{x\to -\infty}(-2x^5-3x+1)=\infty[/tex].