Answer:
[tex]A'(t) = rA(t)[/tex]
Step-by-step explanation:
Given
[tex]A(t) \to[/tex] Amount
Required
The differential equation
The equation for the amount is:
[tex]A(t) = A_0 * e^{rt}[/tex]
Where:
[tex]A_0 \to[/tex] initial amount
[tex]r \to[/tex] rate
[tex]t \to[/tex] time
Differentiate[tex]A(t) = A_0 * e^{rt}[/tex]
[tex]A'(t) = A_0 * r * e^{rt}[/tex]
So, we have:
[tex]A'(t) = rA_0 * e^{rt}[/tex]
From the question, we have: [tex]A(t) = A_0 * e^{rt}[/tex]
So, the equation becomes
[tex]A'(t) = rA(t)[/tex]