Respuesta :

Given:

The table of values for the function f(x).

To find:

The values [tex]f^{-1}(f(3.14))[/tex] and [tex]f(f(-7))[/tex].

Solution:

From the given table, it is clear that the function f(x) is defined as:

[tex]f(x)=\{(-14,11),(-7,-12),(-12,-5),(9,1),(10,-2),(-2,13)\}[/tex]

We know that if (a,b) is in the function f(x), then (b,a) must be in the function [tex]f^{-1}(x)[/tex]. So, the inverse function is defined as:

[tex]f^{-1}(x)=\{(11,-14),(-12,-7),(-5,-12),(1,9),(-2,10),(13,-2)\}[/tex]

And,

[tex]f^{-1}(f(a))=f^{1}(b)[/tex]

[tex]f^{-1}(f(a))=a[/tex]              ...(i)

Using (i), we get

[tex]f^{-1}(f(3.14))=3.14[/tex]

Now,

[tex]f(f(-7))=f(-12)[/tex]

[tex]f(f(-7))=5[/tex]

Therefore, the required values are [tex]f^{-1}(f(3.14))=3.14[/tex] and [tex]f(f(-7))=5[/tex].