Respuesta :

Answer:

R = (-3, 8).

Step-by-step explanation:

Recall the midpoint formula:

[tex]\displaystyle M=\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)[/tex]

Where M is the midpoint, (x₁, y₁) is one point and (x₂, y₂) is another.

We are given that Q is the midpoint of PR, where P = (11, -2) and Q = (4, 3) and we want to find the coordinates of R.

Substitute Q for M and let P(11, -2) be (x₁, y₁). Hence:

[tex]\displaystyle (4, 3)=\left(\frac{11+x_2}{2}, \frac{-2+y_2}{2}\right)[/tex]

Split into two separate equations:

[tex]\displaystyle \frac{11+x_2}{2}=4\text{ and } \frac{-2+y_2}{2}=3[/tex]

Solve for each case:

[tex]\displaystyle 11+x_2=8\Rightarrow x_2=-3[/tex]

[tex]\displaystyle -2+y_2=6\Rightarrow y_2=8[/tex]

Therefore, our second point (x₂, y₂) is (-3, 8).

Hence, R = (-3, 8).

Answer:

(15/2),(1/2)

Step-by-step explanation:

(x1 + x2 / 2)  ,   (y1 + y2) / 2)

(11 + 4 / 2) , (-2 + 3 / 2)

(15/2) , (1/2)