Respuesta :
[tex] \green{\huge{\red{\boxed{\green{\mathfrak{QUESTION}}}}}} [/tex]
Find the value of cos J rounded to the nearest hundredth
[tex]\bold{ \red{\star{\blue{GIVEN }}}}[/tex]
HYPOTHESES= 13
PERPENDICULAR= 12
BASE = ?
[tex]\bold{\blue{\star{\red{TO \: \: FIND}}}}[/tex]
[tex] \cos(j) = ?[/tex]
[tex] \bold{ \green{ \star{ \orange{FORMULA \: USED}}}}[/tex]
- PYTHAGORAS THEROM
- [tex] \cos(j) = \frac{ BASE}{HYPOTENUSE}[/tex]
[tex] \huge\mathbb{\red A \pink{N}\purple{S} \blue{W} \orange{ER}}[/tex]
FOR BASE:-
[tex] {h}^{2} = {p}^{2} + {b}^{2} [/tex]
[tex] {13}^{2} = {12}^{2} + {x}^{2} \\ 169 - 144 = {x}^{2} \\ 25 = {x}^{2} \\ \sqrt{25} = x \\ 5 = x = base[/tex]
NOW :-
[tex] \cos(j) = \frac{ BASE}{HYPOTENUSE}[/tex]
[tex] \cos(j) = \frac{5}{13} \\ \cos(j) = 0.34[/tex]
Answer:
cosJ ≈ 0.38
Step-by-step explanation:
This is a 5- 12- 13 right triangle
with HI = 12, HJ = 13, IJ = 5
cosJ = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{IJ}{HJ}[/tex] = [tex]\frac{5}{13}[/tex] ≈ 0.38 ( to nearest hundredth )