Answer:
Step-by-step explanation:
Binomial Expansion:
[tex](2x-3y)^4 \\\\= 4C_0(2x)^4 (-3y)^0 + 4C_1(2x)^3 (-3y)^1 + 4C_2(2x)^2(-3y)^2 \\\\+ 4C_3(2x)^1 (-3y)^3 + 4C_4(2x)^0 (-3y)^4\\\\=16x^4 + 4(8x^3)(-3y) + 6(4x^2)(9y^2) + 4(2x)(-27y^3) + 81y^4\\\\=16x^4 - 96x^3y + 216x^2y^2-216xy^3 +81y^4[/tex]
Pascal's Triangle:
Zero row 1
First row 1 1
Second row 1 2 1
Third row 1 3 3 1
Fourth row 1 4 6 4 1