The University of Montana ski team has thirteen entrants in a men's downhill ski event. The coach would like the first, second, and third places to go to the team members. In how many ways can the thirteen team entrants achieve first, second, and third places

Respuesta :

fichoh

Answer:

1716 ways

Step-by-step explanation:

Given that :

Number of entrants = 13

The number of ways of attaining first, second and third position :

The number of ways of attaining first ; only 1 person can be first ;

Using permutation :

nPr = n! ÷(n-r)!

13P1 = 13! ÷ 12! = 13

Second position :

We have 12 entrants left :

nPr = n! ÷(n-r)!

12P1 = 12! ÷ 11! = 12

Third position :

We have 11 entrants left :

nPr = n! ÷(n-r)!

11P1 = 11! ÷ 10! = 11

Hence, Number of ways = (13 * 12 * 11) = 1716 ways